【SHAPとは?】ISO 42001が求める「説明可能なAI」の実現手法―SHAP

[updated: 2025-06-04]

はじめに

AI の社会実装が加速するいま、組織が 「なぜその AI はそう判断したのか」 を説明できることは、規制対応だけでなく信頼構築の核心になっています。本稿では 2023 年 12 月に発行された国際規格 ISO / IEC 42001:2023 と、その要求事項を満たす実務的な鍵となる SHAP(SHapley Additive ExPlanations) の役割を、初学者にも分かるよう丁寧に解説します。

ISO 42001とは

AIマネジメントシステム(AIMS)の概要と狙い

ISO/IEC 42001:2023 は、AI システムのライフサイクル全体を対象に “マネジメントシステム” を構築・運用するための要求事項を定めた世界初の国際規格です。発行は 2023 年 12 月で、現在は各国の認証スキーム整備が進んでいます。
中核テーマ目的具体例
説明責任出力結果に対し組織が責任を持つログと根拠を残し、第三者監査に備える
公平性バイアスの緩和・是正属性ごとの誤差を定量評価
説明可能性利害関係者が理解できる説明個別予測レベルでの要因可視化
EU AI Act(2024 年 7 月公布、24 年 8 月発効)など各国規制とも連動しており、リスクが高い AI システムには “個別説明” を行う能力が強く求められます。
出典

ISO 42001が求める「説明可能性」とは

規格は、モデルの設計・学習・運用のあらゆる段階で「説明可能性」を確保し、結果をレビュー可能な形で保持する ことを要求します。本記事では実務で広く採用されているベストプラクティスとして、次の 3 層に分けて説明します。(※ 3 層構造は規格本文に直接書かれているわけではありません。)
  1. グローバル説明――モデル全体で重要な特徴量やルールを示す
  1. ローカル説明――個々の予測が下された理由を示す
  1. 運用説明――説明手法の妥当性・限界を文書化し、再学習や監査で再確認
SHAP は特に 2 と 3 を高精度かつ一貫性をもって実現できるため、ISO 42001 との親和性が高いと評価されています。
出典

SHAPとは

ゲーム理論が支える説明可能 AI

SHAP は 2017 年に Lundberg & Lee が提案 した手法で、ゲーム理論の Shapley 値 を応用し「各特徴量が予測にどれだけ寄与したか」を数値で示します。
特徴概要
一貫性モデルがある特徴量への依存度を高めれば SHAP 値も必ず増える
局所性1 件のデータに対しても厳密に寄与度を算定
モデル非依存ツリー系・NN・大規模言語モデルなど多様なモデルで利用可
LIME など他の XAI 手法と比べ、説明の安定性理論的保証 が強いため、規格や監査の現場で採用が拡大しています。
出典
 

SHAPの種類

SHAPバリアントニーズ目的
TreeSHAP決定木系モデルで高速に正確に計算したい厳密な Shapley 値を効率的に計算
FastTreeSHAPより高速化したいTreeSHAP をさらに高速化
KernelSHAPモデル内部にアクセスできない(ブラックボックス)モデル非依存で近似計算
DeepSHAPニューラルネットを使っている勾配を使って効率的に計算
Text/Image SHAPテキストや画像などの説明がしたいマスク処理で可視化に対応
※SHAPバリアントとは、SHAP(SHapley Additive exPlanations)という説明可能AIの手法を、モデルの種類や用途に応じて最適化・拡張したアルゴリズムの“バリエーション(派生型)”のことを指します。
 

アルゴリズム別 SHAPの使い分け

SHAPバリアント主な対応モデル特徴推奨速度目安※
TreeSHAP決定木系全般(勾配ブースティング, Random Forest, CatBoost など)Shapley値を厳密に計算できる高速アルゴリズム★★★
FastTreeSHAP上記と同じLinkedIn が開発。FastTreeSHAP v1: ~1.5×、v2: ~2.5× の高速化(単一コア比較) (LinkedIn)★★★★
KernelSHAPモデル非依存近似計算(重み付け回帰でサンプリング)。ブラックボックス API でも可
DeepSHAPニューラルネットDeepLIFT をベースに勾配伝播で近似 Shapley 値 (Captum)★★
Text / Image SHAP(PartitionExplainer 系)NLP / CVトークンやスーパー・ピクセル単位でマスクし寄与度を可視化。構造化マスカーで高速化 (SHAP)★★
※★が多いほど高速 用途ごとの早見表 ・大量バッチ推論 × 木モデル → Fast TreeSHAP ・ブラックボックスAPI → KernelSHAP ・生成AIやLLM → Text SHAPでトークンレベル寄与度

課題

SHAPには運用上の注意点もありますが、重要なのは課題を知った上でどのように活用するかという視点です。
これらを適切に管理すれば、ISO 42001が求める“説明可能性”の要件を十分に満たすことができます。
  1. 多重共線性
      • 強く相関した特徴があると寄与度が分散し、解釈が難しくなる。
      • 解決策:多重共線性の高い特徴を事前にまとめて Grouped SHAP を適用。
  1. 外挿解釈の危険
      • SHAPは観測データ範囲外の挙動を保証しない。
      • モデル外挙動を検証するシナリオテストが必須。
  1. 計算コスト
      • 大規模データ・複雑モデルでは秒単位→分単位に。
      • Tree系なら Fast TreeSHAP、深層学習ではサブサンプリング+キャッシュ戦略が有効。
  1. プライバシー
      • SHAP値そのものが機微情報を推定できる場合がある。
      • ロールベースアクセスと差分プライバシー加工が推奨。
 

SHAPがISO 42001で果たす役割

  1. 個別説明の提供
      • 規格の “説明可能性” 要件を満たすドキュメントをワンクリックで生成可能。
  1. リスクアセスメントの裏付け
      • 重要特徴量とバイアスの可視化により、公平性の検証と改善施策の優先順位付けを支援。
  1. 継続的改善(PDCA)の可視指標
      • モデル更新時の SHAP 値変化を追跡し、性能劣化や思わぬバイアスを早期検知。
これらは ISO 42001 が求める “実装+エビデンス保持” を、エンジニアリングコストを抑えつつ実現できる点で大きなメリットがあります。

実務に活かす

SHAP を組み込んだ AIMS 構築 5 ステップ

ステップ目的実施例
1. 要件定義ビジネス/規制要件と説明粒度を整理「個別スコア解釈必須」などをステークホルダーと合意
2. モデル設計学習パイプラインに SHAP を組み込む を CI/CD に追加
3. リスク評価SHAP 値で公平性・ロバスト性を定量化属性別平均 SHAP をダッシュボード化
4. 監査証跡予測時の SHAP 出力を安全に保存重要ログを改ざん検知付きストレージへ
5. 継続的改善SHAP 値変化を KPI 化し定期レビュー3 か月ごとにバイアストレンドをレビュー

導入時の留意点

SHAP だけでは完結しない

  • 解釈コスト: 数値が正負どちらを示すか、必ず業務側とすり合わせる
  • 複雑モデルの近似誤差: 大規模 Transformer などでは計算量・近似精度の検証が必須
  • 倫理的判断の限界: “良い・悪い” の最終判断は人間と社内ポリシーが担う
  • 多重共線性と特徴量依存: 強い相関がある特徴は寄与度が分散して誤解を招くため、Grouped SHAP やドメイン知識での特徴量まとめが必要
  • データ/モデル・ドリフト対応: SHAP は学習時の分布を前提とするため、定期的にベースラインを更新しドリフト監視とセットで運用する
  • プライバシー漏えいリスク: 個別 SHAP 値が機微情報を推定しうる。公開範囲をロールベースで制限し、必要に応じてノイズ付与(差分プライバシー)を検討する
これらを補完するため、責任体制・レビュー会議 を AIMS プロセスに明示し、SHAP を過信しない運用が推奨されます。
補完手法の例
Counterfactual 解析や Causal SHAP を併用すると、バイアスの根因分析がより精緻になります。

まとめ表

ISO 42001 と SHAP の関係早見

観点ISO 42001 要求SHAP が提供する機能
個別説明利害関係者が理解可能な根拠の提示局所的 SHAP 値で数値+可視化
公平性バイアス検知と是正策の提示属性別 SHAP 集計で影響度を定量化
継続的改善再学習時の変化モニタリング時系列で SHAP 値を比較し逸脱を検出
監査証跡判断根拠の保全・開示SHAP 出力をログ保存し再現性を確保

参考リンク

 
AI モデルの設計から AI導入まで、株式会社 Elcamy では幅広いサポートを提供しています。貴社の AI ガバナンス強化をご検討中であれば、ぜひご相談ください。

サービス紹介

Dify の構築や、ワークフローの作成は、見た目以上に複雑で思っていたより大変な部分も多いんです。でも、ご安心ください。弊社のサービスで、そんな面倒な作業も丸投げできちゃいます。
「自分たちで全部やるのは時間もないし無理だな」と感じたとき、ぜひお任せください。本当にやりたいことに集中できるよう、しっかりサポートいたします。お気軽にご相談ください!

お問い合わせ

お客様の社内DX、内製化、新規事業開発・事業成長等における課題解決をサポートします。まずはお気軽にご相談ください。
 

採用

ここまでお読みいただき、ありがとうございます。私たちが日々大切にしていること、会社のカルチャーやメンバーの想いを少しでも感じ取っていただけたら嬉しいです。
株式会社Elcamyでは、AI・機械学習・分析に情熱を持ち、新しい価値を一緒に生み出していける仲間を募集中です。テクノロジーの最前線で共に成長し、挑戦する喜びを分かち合える環境がここにはあります。
「ちょっと興味がある」「話を聞いてみたい」と思った方は、ぜひ一度こちらの募集職種ページをご覧ください。
▼募集中の職種はこちら
あなたとお話できることを、私たちメンバー一同、心より楽しみにしています!